Knowledge Base

Everything you need to understand plasma technology all in one place.

Knowledge Articles

Plasma cleaning & activation of Intraocular Lenses


Plasma cleaning and activation of Intraocular Lens (IOL) materials prior to spin coating with 2D transition metal carbides

henniker plasma citation news intraocular lens material activation
Figure 4. Digital image processing using the Laplacian operator for the proof of concept adjustable focus lens design a) Histograms of pixel greyscale for the inset (a) images of institute logos viewed through the fabricated test cell. Image Courtesy of

Recent advances in the design and incorporation of 2D materials, specifically transition metal carbides, paves the way for controlled, adjustable focus restoration following cataract surgery. Henniker plasma systems are utilised to clean and activate the surface of intraocular lens materials (IOLs) in order to produce a well-adhered, uniform coating on the lens. 

Read the full abstract below

2D Titanium Carbide (Ti3C2Tx) in Accommodating Intraocular Lens Design


While intraocular lenses (IOL) are used to restore visual acuity in cataract patients, they are limited in their development as no clinically available lens can effectively mimic the accommodative function of the eye's natural lens. The optoelectronic properties of 2D transition metal carbides and/or nitrides (MXenes), including high electronic conductivity, optical transparency, flexibility, biocompatibility, and hydrophilicity, suggest potential use within an accommodating IOL. This study investigates the use of Ti3C2Tx (MXene) as a transparent, conductive electrode to allow changes in optical power. Ti3C2Tx is synthesized and spin‐coated on hydrophobic acrylate IOLs, achieving a sheet resistance ranging from 0.2–1.0 kΩ sq−1 with 50–80% transmittance in the visible region. Human lens epithelial and monocytic cells show no cytotoxic nor inflammatory response to the coated lenses. An adjustable focus test cell is fabricated using a liquid crystal (LC) layer sandwiched between Ti3C2Tx coatings on a solid support. Molecular reorientation of the LC layer, through an applied electric field, results in changes in optical power as objects viewed through the test cell appeared in and out of focus. This study is the first step toward the use of Ti3C2Tx within an accommodative IOL design through demonstration of reversible, controlled, adjustable focus.

Keywords: accommodating intraocular lens, liquid crystals, MXene, nanomaterials, ophthalmic medical device, optoelectronic materials
To read the full paper click here

Or view our dedicated Plasma Treatment of Optics and Lenses and our Advanced Plasma Surface Treatment Systems for more details.


See what our customers have to say

  • "The technical team at Henniker are very knowledgeable and supportive and always approachable. I have found it a pleasure to work with them."

    Simon Baxter - BAE Systems, MAI

  • "Henniker guided us to choose the most suitable plasma unit for our application, ensured an accelerated delivery time & guided us through the very easy setup. We obtained quality results with their unit within minutes of setup & consistent results thereafter. The support they have provided has been rapid and helpful."

    Dr Ravi Desai - Making Lab, Francis Crick Institute

    Francis Crick Institute
  • "Henniker provided our team with excellent service during the course of our work together, the plasma cleaner arrived quickly and was installed with ease, giving us visible results from the outset and confirming that we made the right decision in choosing a local UK manufacturer."

    Dr Panagiotis Manesiotis BSc MRSC - Queen’s University Belfast

    Queens Uni Belfast
  • "Our customers and operations demand reliability at every level and were a key factor in our decision to choose a UK based manufacturer of plasma treatment equipment."

    Tom Doak - Trak Microwave

    Queens Uni Belfast
  • "Henniker’s after sales support is first class. They have always been extremely responsive if we have ever had need to call on them."

    Steve Rackham - Teledyne

  • "Henniker’s plasma systems have delivered tangible benefits to us right from day one. The team there are very easy to work with."

    Ian Bruce - Coopervision

  • "Henniker really stood out, both in their product range and technical knowledge. They are a great company to work with."

    Karthik Nair - University of Bradford

    University of Bradford
  • "We are very impressed with the ease of use and reliability of our plasma unit and were producing results within minutes of setting it up."

    Dr Neil Wilson - Warwick University

    Warwick University
  • "Our collaborative work with the team at Henniker was a very positive experience and one that we look forward to developing further."

    Ewen Kellar - TWI

  • "Henniker provided a tailored product to match our exact requirements. They are a pleasure to work with."

    Dr Will Shu - Heriot Watt University

    Heriot Watt University

  • Huf
  • Kingspan
  • BOC
  • Maclaren
  • Cambridge Uni
  • Warwick Uni
  • Morgan Ceramics
  • QMUL
  • University Bradford
  • BAE
  • Imperial College London
  • Heriot Watt Uni
Henniker Plasma Logo

ISO logo



Connect with us

Henniker Plasma 3 Berkeley Court, Manor Park, Runcorn, WA7 1TQ, UK

+44 (0)1925 830 771   +44 (0)1925 800 035