Knowledge Base

Everything you need to understand plasma technology all in one place.

Knowledge Articles

Henniker HPT-100 plasma system to assist with precise patterning of solar cells

Newly published article using the Henniker HPT-100 plasma system to assist with precise patterning of solar cells.

Researchers at the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have recently used a Henniker HPT-100 to aid in their efforts to fabricate indium tin oxide (ITO)-free ultra-lightweight organic solar cells through inkjet-printing whilst preserving high efficiencies.

henniker plasma citation news droplet formation on the surface of plexiglass surface before plasma cleaning

Figure 1 . Printed ZnO electron transport layer on PEDOTA before and after plasma treatment

The HPT-100 was used to increase the hydrophilicity of the substrates to ensure complete wetting of the ZnO ink used on the surface of the electrode layer, which is displayed clearly in the image above.

“Combined with plasma and solvent post-treatments, this approach prevents shunts and ensures precise patterning of solar cells.”

Read the full abstract below

Fully Inkjet‐Printed, Ultrathin and Conformable Organic Photovoltaics as Power Source Based on Cross‐Linked PEDOT:PSS Electrodes



Ultra‐lightweight solar cells have attracted enormous attention due to their ultra‐conformability, flexibility, and compatibility with applications including electronic skin or miniaturized electronics for biological applications. With the latest advancements in printing technologies, printing ultrathin electronics is becoming now a reality. This work offers an easy path to fabricate indium tin oxide (ITO)‐free ultra‐lightweight organic solar cells through inkjet‐printing while preserving high efficiencies. A method consisting of the modification of a poly(3,4‐ethylene dioxythiophene) polystyrene sulfonate (PEDOT: PSS) ink with a methoxy silane‐based cross‐linker (3‐glycidyloxypropyl)trimethoxysilane (GOPS)) is presented to chemically modify the structure of the electrode layer. Combined with plasma and solvent post‐treatments, this approach prevents shunts and ensures precise patterning of solar cells. By using poly(3‐hexylthiophene) along rhodanine‐benzothiadiazole‐coupled indacenodithiophene (P3HT:O‐IDTBR), the power conversion efficiency (PCE) of the fully printed solar cells is boosted up to 4.73% and fill factors approaching 65%. All inkjet‐printed ultrathin solar cells on a 1.7 µm thick biocompatible parylene substrate are fabricated with PCE reaching up to 3.6% and high power‐per‐weight values of 6.3 W g−1. After encapsulation, the cells retain their performance after being exposed for 6 h to aqueous environments such as water, seawater, or phosphate-buffered saline, paving the way for their integration in more complex circuits for biological systems.

To read the full paper click here

Or view our dedicated Plasma Cleaning page and our HPT-100 Model page for more details.


See what our customers have to say

  • "The technical team at Henniker are very knowledgeable and supportive and always approachable. I have found it a pleasure to work with them."

    Simon Baxter - BAE Systems, MAI

  • "Henniker guided us to choose the most suitable plasma unit for our application, ensured an accelerated delivery time & guided us through the very easy setup. We obtained quality results with their unit within minutes of setup & consistent results thereafter. The support they have provided has been rapid and helpful."

    Dr Ravi Desai - Making Lab, Francis Crick Institute

    Francis Crick Institute
  • "Henniker provided our team with excellent service during the course of our work together, the plasma cleaner arrived quickly and was installed with ease, giving us visible results from the outset and confirming that we made the right decision in choosing a local UK manufacturer."

    Dr Panagiotis Manesiotis BSc MRSC - Queen’s University Belfast

    Queens Uni Belfast
  • "Our customers and operations demand reliability at every level and were a key factor in our decision to choose a UK based manufacturer of plasma treatment equipment."

    Tom Doak - Trak Microwave

    Queens Uni Belfast
  • "Henniker’s after sales support is first class. They have always been extremely responsive if we have ever had need to call on them."

    Steve Rackham - Teledyne

  • "Henniker’s plasma systems have delivered tangible benefits to us right from day one. The team there are very easy to work with."

    Ian Bruce - Coopervision

  • "Henniker really stood out, both in their product range and technical knowledge. They are a great company to work with."

    Karthik Nair - University of Bradford

    University of Bradford
  • "We are very impressed with the ease of use and reliability of our plasma unit and were producing results within minutes of setting it up."

    Dr Neil Wilson - Warwick University

    Warwick University
  • "Our collaborative work with the team at Henniker was a very positive experience and one that we look forward to developing further."

    Ewen Kellar - TWI

  • "Henniker provided a tailored product to match our exact requirements. They are a pleasure to work with."

    Dr Will Shu - Heriot Watt University

    Heriot Watt University

  • Huf
  • Kingspan
  • BOC
  • Maclaren
  • Cambridge Uni
  • Warwick Uni
  • Morgan Ceramics
  • QMUL
  • University Bradford
  • BAE
  • Imperial College London
  • Heriot Watt Uni
Henniker Plasma Logo

ISO logo



Connect with us

Henniker Plasma 3 Berkeley Court, Manor Park, Runcorn, WA7 1TQ, UK

  +44 (0)1925 830 771     +44 (0)1925 800 035